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ABSTRACT 

In this paper we give a graphical method which can be used to determine 
whether or not a group presentation satisfies the small cancellation condition 
T(q). We use this method to determine all 2- and 3-generator presentations 
satisfying T(4). 

I. Introduction 

The small cancellation conditions C(p) and T(q) arise naturally when one 

uses van Kampen diagrams to study groups given by presentations. A number of 

results have been found for groups defined by C(p), T(q) presentations where 

1/p + 1/q = 1/2 (that is, where (p, q ) =  (6,3),(4,4),(3,6)) [2-5]. It is therefore 

useful to be able to recognise when a presentation satisfies the conditions C(p), 
T(q). In this paper we describe a graphical method which can be used to 

determine whether or not a presentation satisfies T(q). 
The values of q for which T(q) is of interest are 3, 4, 6. The condition T(3) is 

no restriction. The T(6) condition will be discussed in another paper by the 

second author. Our principal concern in this paper is with the T(4) condition. 

We determine all 2- and 3-generator presentations satisfying T(4). We also give 

enough graphical information to enable the reader to determine all 4-generator 

presentations satisfying T(4) if he/she so wishes. 

Received February 21, i985 

293 



294 P. HILL ET AL. Isr. J. Math. 

(We note for future 

cyclic permutations 

symmetrized closure 
if r is symmetrized. 

2. Star complexes and the T(q) condition 

2.1. I-Complexes 

A 1-complex consists of two disjoint subsets V (vertices), U (edges) together 

with functions ~ : E --> V, ~" : E --> V, - : E --> E satisfying: ~(e) = ~-(~), e = e, 6 ~  e 

for all e E E .  A closed path in this 1-complex is a succession of edges 

e,, e2 . . . . .  em with z(ei) = ~(ei+t) for i = 1 . . . . .  m (where subscripts are computed 

mod m). The closed path is said to be reduced if ei+t ~ ~ for i = 1 . . . . .  m. We 

call m the length of the path. A closed path of length 1 is called a loop. For a 

vertex v of a 1-complex, the set of edges e with ~(e) = v is denoted by Star(v). 

We remark that 1-complexes are often called graphs by combinatorial group 

theorists (for example, in [6]). However,  we reserve the term graph for a 

different concept, namely the following: a graph consists of a set V (vertices) 

together with a set of  two-element subsets of V (edges). Our basic reference for 

graph theory will be [1]. 

Given any 1-complex ~ (with vertex set V, say), we can associate with it a 

graph F(~f) as follows. The vertex set of F(~f) is V; {u, v} is an edge of F ( ~ )  if 

and only if there is an edge e of ~ with ~(e) = u, r ( e )  = v. For each ordered pair 

(u, v) of elements of V we define 

mu, v = ]{e : e is an edge of ~, ~(e) = u, 7(e) = v}l. 

Note that m,.~ = m .... If F is any graph with vertex set V then we can define a 

weight function on F by assigning weight m.,o to the edge {u, v} (assuming, of 

course, that the m,,v are finite). The weight of a vertex of F is then defined to be 

the sum of the weights of the edges incident with the given vertex (provided the 

sum exists). Note that if F contains F(~f) then the weight (if it exists) of a vertex v 

of F is [ S t a r ( v ) l - m  .... 

2.2. A Formulation of the T(q) Condition 

A set r of words on an alphabet x is said to be symmetrized provided: 

(i) each element of r is non-empty and cyclically reduced; 

(ii) if R E r then all cyclic permutations of R +-~ belong to r. 

reference that if s is a set satisfying (i) then the set of all 

of elements of s U s- '  is a symmetrized set, called the 

of s.) A group presentation (x ; r)  is said to be symmetrized 

Consider the symmetrized presentation ~ = (x; r). A wheel (over ~ )  is a 

reduced van Kampen diagram of the form 
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Qm Ql 

2 

where m _-> 3. Here the Pi and Q, are non-empty words and P,Q,P~-)I E r for 

i = 1 , . . . , m  (subscripts are computed rood m). We say that the wheel has m 

spokes. If q is an integer greater than 2, then the T(q) condition asserts that 

every wheel over ~ has at least q spokes. We wish to give an alternative 

formulation of this condition. 

We associate with ~ a 1-complex ~ ~' (called the star complex of ~ )  as follows. 

The vertex set is x U x ~, and the edge set is r. For a given edge R of ~s, we 

define ~(R) to be the first symbol of R, and r ( R )  to be the inverse of the last 

symbol of R. We define /~ to be R -1. Note that since each element of r is 

cyclically reduced, ~ '  has no loops. 

Now observe that our wheel above gives rise to a reduced closed path of 

length m in ~s,, namely the path P~Q~P~ . . . . .  P,,Q,,P~. 

Conversely, consider a reduced closed path a = R,, R2 , . . . ,  R,, (m => 3) in ~s,. 

If each R~ has length at least 3, then a gives rise to a wheel with m spokes. For 

let R~=aiQla2 ~ where a ~ , a 2 C x U x  -~. Since ~ ' (R~)=~(R2)we have R2=  

a2Q2a~' where a3 E x U x -~. Then R3 = a3Q3a4 ~ where a4 E x U x -~, and so on. 

Since a is closed we eventually obtain R,, = a,.Q,.a~ ~. Thus we have the wheel 

Q~ Qj 

2 

(Note that this van Kampen diagram is reduced since a is reduced.) 
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If some term R~ of the path a above has length less than 3, then a does not 

give rise to a wheel. However, this is a very pathological situation, for each letter 

of R~ will be a piece, and so, in particular, ~ will not even satisfy the small 

cancellation condition C(3). Since T(q) is only useful when considered in 

conjunction with C(p) with p _-> 3, this pathological situation will not occur in 

practice. 

We see from the above discussion that, apart from the pathology described in 

the previous paragraph, T(q) is equivalent to: 

(*) there is no reduced closed path in ~s, of length m, where 3 < m < q. 

We will take (*) to be the definition of T(q) for any symmetrized presentation 

2.3. On Star Complexes and their Associated Graphs 

We note some facts about the star complex ~ ' ,  and the associated graph 

F ( ~ ' ) ,  of a symmetrized presentation ~ = (x;r).  

We remark that star complexes have been considered by other authors (see 

[4]). They will be discussed in a wider context in a forthcoming article by S. J. 

Pride. 

2.3.1. Consider F (~ ' ) .  In passing from ~st to F (~  st) some information is lost. 

Information not lost is which elements of x to x -1 are predecessors of a given 

element of x tO x -~ in relators of ~. Thus, if we have an edge 

a e  -e b 

in F (~ ' ) ,  then this tells us that in at least one relator, a is preceded by b 1. 

Consequently, if we look at all edges of F (~  ~') incident with a given vertex a 

then in relators of ~, a is preceded by precisely b /1 ,b~l , . . . ,b~  ~. 

2.3.2. It is clear that if x is finite then there is a finite symmetrized 
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subpresentation ~0 = (x ; r0) (r0 C_ r) of ~ such that F ( ~ ' )  = F ( ~ ' ) .  This obser- 

vation will enable us to restrict attention to finite presentations. 

2.3.3. Suppose the presentation ~ is finite. Let F be a graph containing F(~  ~') 

and having the same vertex set, and consider the weight function on F as 

described in §2.1. Then the weight of a vertex x is equal to the weight of x- ' .  For 

since ~ '  has no loops, the weights of x and x 1 are ]Star(x)l, ]Star(x-')] 

respectively. Let R E Star(x), so that R = x S  for some word S. Then 

x-~S 'E  Star(x '). This gives a bijection from Star(x) to Star (x-~). 

3. On T(4) presentations 

3.1. Some Definitions 

In order to state our results we need to make a number of definitions. 

Let x be an alphabet. A word on x is said to be positive (resp. negative) if only 

positive (resp. negative) powers of elements of x appear in the word. A word is 

said to be square-free if it has no subword of the the form xk with x E x and 

]k I > 1. A word is said to be cyclically square-free if it has length greater than 1 

and if all its cyclic permutations are square-free. Let w_,, wl be disjoint sets of 

non-empty words on x. A word t~t2" • t5 (s > 1, t~ E w-x U w~ for i = 1 . . . . .  s) is 

called an alternating (w ,, w~)-word if the following holds: for 1 ~ i < s, if ti E w~ 

(e = -+ 1) then ti+j E w_~. The word is called a cyclically alternating (w_,, w,)- 
word if it is an alternating (w_~, wl)-word with the additional property that t~ and 

t, do not belong to the same set w ~ or w~. The t~ are called the factors. When 

considering a factor t~ of a cyclically alternating (w ~, w,)-word t ,&. . ,  t~, we will 

sometimes be interested in the adjacent factors t~ ~, t,+,. In this regard, it is to be 

understood that subscripts are computed mod s, so that if i = 1 then t,_, = ts, 

while if i = s then t,+~ = t~. 
- I  The extended symmetric group (on x) is the group of permutations of x U x 

generated by the permutations (xy)(x 'y- ' ) ,  (xx ') (x, y E x). We denote this 

group by 1), where n = Ix ]. The group ~ ,  induces a group of automorphisms 

(also denoted 1),) of the free group on x. 

Let F be a graph with vertex set V, and let X be a set with I XI = I V I .  A 

labelling of F (by X) is a graph with vertex set X and edge set 

{{)t(u),A(v)}:{u,v} is an edge of F}, 

where A : V---> X is some bijection. If E is a group of permutations of X, then 

two labellings of F, with underlying bijections A, A' say, are said to be 

E-equivalent if A = ~rA' for some ~r E E. 



298 P. HILL ET AL. lsr. J. Math. 

3.2. Two- Generator Presentations 

We will show that a symmetrized presentation ~ = (a, b; r) satisfies T(4) if and 
only if either: each element of r is cyclically square-free; or, there is an 
automorphism ~r E f~2 such that each element of o'r is positive or negative. 

For ~ satisfies T(4) if and only if F(~ s') is a subgraph of a labelling by 
{a, a-l, b, b -1} of one of: 

Up to ~2-equivalence, the labellings of K2,2 are: 

b 

a-' a ~  b 

b-i a-J b-1 
Now F(~ s') will be a subgraph of the former labelling if and only if each relator 
of ~ is positive or negative; F(~ s') will be a subgraph of the latter labelling if and 
only if each relator of ~ is cyclically square-free. 

Up to O~-equivalence, the only labelling of K1,3 is: 

f a: a 

~ ' b -  

Suppose F(~  st) is a subgraph of this graph. If the vertex a -1 of F(~ ~t) is isolated 

then so is a, in which case all vertices are isolated, and ~ has no relators. If the 
edge {a, a -l} belongs to F(~ ~') then a -~ is preceded by a- '  (and only by a -1) in 
relators of ~. Thus neither of the edges {a, b}, {a, b -l} belongs to F(~S'), so r 
consists solely of powers of a. 
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3.3. Three-Generator Presentations 

We will show that a symmetrized presentation ~ = (a, b, c ; r) satisfies T(4) if 
and only if there is an automorphism tr E f~3 such that r is the syrnmetrized closure 

of a set o's, where s satisfies one of the seven conditions 3.3.1-3.3. 7 listed below. 

3.3.I. Each e lement  of s is positive. 

3.3.2. Each e lement  of s is ei ther a power  of c, or a cyclically square-free 

word in a and b, or a cyclically al ternat ing word t~t2. • • ts in non-zero  powers  of c 

and non-empty  square-free  words in a and b with the p roper ty  that for  each 

factor ti which is a positive power  of c, ti_~ ends with b -~ and t~+~ starts with a -~, 

while for each factor t~ which is a negative power  of c, ti ~ ends with a -~ and ti+~ 

starts with b ±~. 

EXAMPLE. S = {c 6, a-lbaba-lb -1, (a-lbaba-1)c-5(ba lba)c 4(b-ta-lb-')c3}. 

3.3.3. Each e lement  of s is a cyclically al ternating ({a,a -~, b,b-~},{c,c-~})- 

word. 

EXAMPLE. S = {cac-~b-'c-'acb}. 

3.3.4. Each e lement  of s is ei ther  a power  of c, or a cyclically square-free  

word in a and b, or  a cyclically al ternat ing word t~t2,'" t~ in non-zero powers of c 

and non-empty  square-free words in a and b with the proper ty  that for  each 

factor t~ which is a positive power  of c, t~_~ ends with a and t~+~ starts with a, while 

for  each factor t, which is a negative power  of c, t~_~ ends with a - '  and t~+~ starts 

with a 

EXAMPLE. S = {C 6, a-~baba-~b -~, (abab ~a-~)c-5(a-~b-'aba-')c 4(a-~ba)c3}. 

3.3.5. Each e lement  of s is ei ther  a cyclically al ternating (ta}, {b, c, bc})-word, 

or a cyclically al ternat ing (u ,v ) -word ,  where  u is the set of al ternating 

({a},{b, c, bc})-words and v is the set of inverses of words in u. In addition, it is 

required in the latter case that no u- fac tor  begins with c or ends with b, and no 

v-factor  begins with b -~ or ends with c t 

EXAMPLE. S = {ababcac,(ababc)(bababca)-~(abaca)(babc)-l}. 

3.3.6. Each e lement  of s is e i ther  a power  of a, or a power  of c, or a cyclically 

al ternat ing (u, v)-word,  where  u = {b, b -~} and v is the set of words of the form 

(a"c-n)  ±~ (m, n positive integers). 

EXAMPLE. S = {a lo, C 6, (a2c-3)b(ac-5)-lb(aTc_2)_lb_l}. 
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3.3.7. Each element of s is either a power of ac, or a cyclically alternating 

(u, v)-word, where u = {b, b -~} and v is the set of words of the form PQ-~ (P, Q 
non-empty positive square-free words in a and c). 

EXAMPLE. S ={(ac)4,[(ac)2(a-lc I)3a-I]b[aca(c-la 1)]b z}. 

To prove the above, observe that ~ satisfies T(4) if and only if F (~  ~') is a 

subgraph of a labelling by {a, a -1, b, b -1, c, c -j} of one of the following: 

K~.~ K2., K,,s F,, 

Up to l~3-equivalence, the labellings of K3,3 a r e :  

a' sfa al) i 
C ~  C -I 

Now F(~  ~') will be a subgraph of the former labelling if and only if each relator 

of ~ is positive or negative; F(3 ~s') will be a subgraph of the latter labelling if and 

only if r is the symmetrized closure of a set s satisfying 3.3.2. 
We will say that ~ is of Type A if F (~  s') is fl3-equivalent to a subgraph of one 

of the above labellings of /(3.3. 
Up to l)3-equivalence, the labellings of K2.4 are: 
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a a 

¢ c 1 a t 

b '  b 

b-~ 

Now F(~  ~') will be a subgraph of the former labelling if and only if r is the 

symmetrized closure of a set s satisfying 3.3.3. We will show that if F (~  s') is a 

subgraph of the latter labelling then ~ is already of Type A. By 2.3.2 we can 

assume that ~ is finite, so that we can make use of 2.3.3. Looking at the weights 

of the vertices a, a ~, b, b ~ we obtain: 

m,~,,, , + ma,b , = m a  ,o + m a  ',c + m,,  ',c-' + m, , - ,  b, 

m b ,  a ~ + mb ,  b ~ = m s  t a + m s  ~,c + m s  ~,c -~ + m b - ~ , b .  

These give 

0 = m, ',c + m, ',c-, + mb-,c + mb-Lc t, 

and so m ,  ~,c = ma '.c ' -- mb-,.c = ms '.c-' = O. Thus the edges {a- ' ,  c}, {a ', c-'}, 

{b ', c}, {b ', c-'} do not belong to F(~S'). 

An argument like that used for two-generator presentations above shows that 

if F (~  ~') is a subgraph of a labelling of K~.5 then ~ is of Type A. (AlternativeJy, 

one can use a weight argument.) 

Up to f~3-equivalence, the labellings of Fo are: 

(i) a (ii) a 

b b ~ b 

a -~ a -~ 

(iii) a 

b - 1  

b 

a - i  
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• a a a a 
(v (v)  " (v i i )  

c 1 c_t  c c 

Now F ( ~  S') will be a subgraph of (i) (resp. (ii), (vi), (vii)) if and only if r is the 

symmetrized closure of a set s satisfying 3.3.4 (resp. 3.3.5, 3.3.6, 3.3.7). We now 

show that if F (~  s') is a subgraph of one of (iii), (iv), (v), then ~ is already of Type 

A. As before, we can assume that ~ is finite. 

Consider (iii). Looking at the weights of a, a ~ and b, b -1 and using 2.3.3 we 
have: 

ma,b  -~ + ma,c  + ma ,  a -1 = m,~ l,a "4- ma ',b, 

mb,  a ~ +  m b . c - ~ +  mb ,  b -~ = m b  ',b AI- m b - t . a .  

From these we obtain 

ma,c + mb,  c- ~ = O. 

Thus ma, c =mb, c , = 0, so the edges {a, c}, {b, c -l} do not belong to F(~S'). 

Now consider (iv) and (v). Looking at the weights of a and a -a, b and b -1, c 

and c -1, and proceeding similarly as above we obtain that m,.b = 0 (for (iv)), 

mb.c-, = 0 (for (v)). 

3.4. n - G e n e r a t o r  P r e s e n t a t i o n s  

One can obviously, in theory, use arguments similar to those above to 

determine, for any n, all n-generator presentations satisfying T(4). Firstly one 

must compute all graphs on 2n vertices without triangles, and which are maximal 

with this property. (We remark that, by Tur~n's Theorem [1, p. 17], a graph on 

2n vertices without triangles has at most n 2 edges.) Then one must analyse the 

labellings of these graphs by {Xl . . . .  ,x, ,  Xl I . . . .  ,x~l}, making use of weight 

arguments as above. 

Unfortunately, even for n = 4, the amount of labour involved in carrying out 

these computations by hand is prohibitive. There are 10 graphs on 8 vertices 
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without triangles, and which are maximal with this property, namely: the 
bipartite graphs K4.~, K~.~. K2.~, K~7, and the graphs F~ . . . .  , F6 depicted below. 
Some of these graphs are easily analysed, but others (such as F2) have a large 
number of labellings (up to f~,-equivalence). 
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