ON THE T(q)-CONDITIONS OF SMALL CANCELLATION THEORY

BY

PATRICIA HILL,[®] STEPHEN J. PRIDE[®] AND ALFRED D. VELLA^c *~ i 7 Whitestone Lane, Newton, Swansea, Wales, SA3 4UH ; ~Department of Mathematics, University.of Glasgow, Glasgow, Scotland, G12 8Q W ; and C Department of Computing, North Staffordshire Polytechnic, Stoke-on-Trent, England, ST4 2DT*

ABSTRACT

In this paper we give a graphical method which can be used to determine whether or not a group presentation satisfies the small cancellation condition $T(q)$. We use this method to determine all 2- and 3-generator presentations satisfying $T(4)$.

I. Introduction

The small cancellation conditions $C(p)$ and $T(q)$ arise naturally when one uses van Kampen diagrams to study groups given by presentations. A number of results have been found for groups defined by $C(p)$, $T(q)$ presentations where $1/p + 1/q = 1/2$ (that is, where $(p, q) = (6, 3), (4, 4), (3, 6)$) [2-5]. It is therefore useful to be able to recognise when a presentation satisfies the conditions *C(p), T(q).* In this paper we describe a graphical method which can be used to determine whether or not a presentation satisfies *T(q).*

The values of q for which $T(q)$ is of interest are 3, 4, 6. The condition $T(3)$ is no restriction. The $T(6)$ condition will be discussed in another paper by the second author. Our principal concern in this paper is with the $T(4)$ condition. We determine all 2- and 3-generator presentations satisfying $T(4)$. We also give enough graphical information to enable the reader to determine all 4-generator presentations satisfying $T(4)$ if he/she so wishes.

Received February 21, i985

2. Star complexes and the $T(q)$ condition

2.1. I-Complexes

A 1-complex consists of two disjoint subsets V (vertices), E (edges) together with functions $\iota : E \to V$, $\tau : E \to V$, $\bar{E} \to E$ satisfying: $\iota(e) = \tau(\bar{e})$, $\bar{\bar{e}} = e$, $\bar{e} \neq e$ for all $e \in E$. A *closed path* in this 1-complex is a succession of edges e_1, e_2, \ldots, e_m with $\tau(e_i) = \iota(e_{i+1})$ for $i = 1, \ldots, m$ (where subscripts are computed mod *m*). The closed path is said to be *reduced* if $e_{i+1} \neq \bar{e}_i$ for $i = 1, ..., m$. We call m the *length* of the path. A closed path of length 1 is called a *loop.* For a vertex v of a 1-complex, the set of edges e with $\iota(e) = v$ is denoted by Star(v).

We remark that 1-complexes are often called graphs by combinatorial group theorists (for example, in [6]). However, we reserve the term graph for a different concept, namely the following: a *graph* consists of a set V (vertices) together with a set of two-element subsets of V (edges). Our basic reference for graph theory will be [1].

Given any 1-complex $\mathscr X$ (with vertex set V, say), we can associate with it a graph $\Gamma(\mathscr{X})$ as follows. The vertex set of $\Gamma(\mathscr{X})$ is V; $\{u, v\}$ is an edge of $\Gamma(\mathscr{X})$ if and only if there is an edge e of $\mathscr X$ with $\iota(e) = u$, $\tau(e) = v$. For each ordered pair (u, v) of elements of V we define

$$
m_{u,v} = |\{e : e \text{ is an edge of } \mathcal{X}, \iota(e) = u, \tau(e) = v\}|.
$$

Note that $m_{u,v} = m_{v,u}$. If Γ is any graph with vertex set V then we can define a *weight function* on Γ by assigning weight $m_{u,v}$ to the edge $\{u, v\}$ (assuming, of course, that the $m_{\mu,\nu}$ are finite). The *weight of a vertex* of Γ is then defined to be the sum of the weights of the edges incident with the given vertex (provided the sum exists). Note that if Γ contains $\Gamma(\mathscr{X})$ then the weight (if it exists) of a vertex v of Γ is $|\text{Star}(v)|-m_{v,v}$.

2.2. A Formulation of the T(q) Condition

A set r of words on an alphabet x is said to be *symmetrized* provided:

(i) each element of r is non-empty and cyclically reduced;

(ii) if $R \in r$ then all cyclic permutations of $R^{\pm 1}$ belong to r.

(We note for future reference that if s is a set satisfying (i) then the set of all cyclic permutations of elements of $s \cup s^{-1}$ is a symmetrized set, called the symmetrized closure of s.) A group presentation $\langle x; r \rangle$ is said to be symmetrized if r is symmetrized.

Consider the symmetrized presentation $\mathcal{P} = \langle x; r \rangle$. A *wheel* (over \mathcal{P}) is a reduced van Kampen diagram of the form

where $m \ge 3$. Here the P_i and Q_i are non-empty words and $P_i Q_i P_{i+1}^{-1} \in \mathbf{r}$ for $i = 1, \ldots, m$ (subscripts are computed mod m). We say that the wheel has m spokes. If q is an integer greater than 2, then the $T(q)$ condition asserts that *every wheel over* P *has at least q spokes.* We wish to give an alternative formulation of this condition.

We associate with $\mathcal P$ a 1-complex $\mathcal P^*$ (called the *star complex* of $\mathcal P$) as follows. The vertex set is $x \cup x^{-1}$, and the edge set is r. For a given edge R of \mathcal{P}^{st} we define $\iota(R)$ to be the first symbol of R, and $\tau(R)$ to be the inverse of the last symbol of R. We define \overline{R} to be R^{-1} . Note that since each element of r is cyclically reduced, \mathcal{P}^{st} has no loops.

Now observe that our wheel above gives rise to a reduced closed path of length *m* in \mathcal{P}^{st} , namely the path $P_1Q_1P_2^{-1}, \ldots, P_mQ_mP_1^{-1}$.

Conversely, consider a reduced closed path $\alpha = R_1, R_2, \ldots, R_m$ ($m \ge 3$) in \mathcal{P}^{st} . If each R_i has length at least 3, then α gives rise to a wheel with m spokes. For let $R_1 = a_1Q_1a_2^{-1}$ where $a_1, a_2 \in \mathbf{x} \cup \mathbf{x}^{-1}$. Since $\tau(R_1) = \tau(R_2)$ we have $R_2 =$ $a_2Q_2a_3^{-1}$ where $a_3 \in \mathbf{x} \cup \mathbf{x}^{-1}$. Then $R_3 = a_3Q_3a_4^{-1}$ where $a_4 \in \mathbf{x} \cup \mathbf{x}^{-1}$, and so on. Since α is closed we eventually obtain $R_m = a_m Q_m a_1^{-1}$. Thus we have the wheel

(Note that this van Kampen diagram is reduced since α is reduced.)

If some term R_i of the path α above has length less than 3, then α does not give rise to a wheel. However, this is a very pathological situation, for each letter of R_i will be a piece, and so, in particular, $\mathcal P$ will not even satisfy the small cancellation condition $C(3)$. Since $T(q)$ is only useful when considered in conjunction with $C(p)$ with $p \ge 3$, this pathological situation will not occur in practice.

We see from the above discussion that, apart from the pathology described in the previous paragraph, $T(q)$ is equivalent to:

(*) there is no reduced closed path in \mathcal{P}^{st} of length m, where $3 \le m < q$.

We will take $(*)$ to be the definition of $T(q)$ for any symmetrized presentation \mathscr{P} .

2.3. On Star Complexes and their Associated Graphs

We note some facts about the star complex \mathcal{P}^{st} , and the associated graph $\Gamma({\mathscr P}^{\rm st})$, of a symmetrized presentation ${\mathscr P} = \langle x; r \rangle$.

We remark that star complexes have been considered by other authors (see [4]). They will be discussed in a wider context in a forthcoming article by S. J. Pride.

2.3.1. Consider $\Gamma(\mathcal{P}^{st})$. In passing from \mathcal{P}^{st} to $\Gamma(\mathcal{P}^{st})$ some information is lost. Information not lost is which elements of $x \cup x^{-1}$ are predecessors of a given element of $x \cup x^{-1}$ in relators of \mathcal{P} . Thus, if we have an edge

 \overline{b}

in $\Gamma({\cal P}^{s})$, then this tells us that in at least one relator, a is preceded by b^{-1} . Consequently, if we look at all edges of $\Gamma(\mathcal{P}^s)$ incident with a given vertex a

then in relators of \mathcal{P} , a is preceded by precisely $b_1^{-1}, b_2^{-1}, \ldots, b_n^{-1}$.

2.3.2. It is clear that if x is finite then there is a finite symmetrized

subpresentation $\mathcal{P}_0 = \langle x; r_0 \rangle$ ($r_0 \subseteq r$) of $\mathcal P$ such that $\Gamma(\mathcal{P}_0^{\text{st}}) = \Gamma(\mathcal{P}^{\text{st}})$. This observation will enable us to restrict attention to finite presentations.

2.3.3. Suppose the presentation $\mathscr P$ is finite. Let Γ be a graph containing $\Gamma(\mathscr P^{\rm st})$ and having the same vertex set, and consider the weight function on Γ as described in §2.1. Then the weight of a vertex x is equal to the weight of x^{-1} . For since \mathcal{P}^{st} has no loops, the weights of x and x^{-1} are $|\text{Star}(x)|$, $|\text{Star}(x^{-1})|$ respectively. Let $R \in \text{Star}(x)$, so that $R = xS$ for some word S. Then $x^{-1}S^{-1} \in \text{Star}(x^{-1})$. This gives a bijection from Star(x) to Star (x⁻¹).

3. On T(4) presentations

3.1. Some Definitions

In order to state our results we need to make a number of definitions.

Let x be an alphabet. A word on x is said to be *positive* (resp. *negative)* if only positive (resp. negative) powers of elements of x appear in the word. A word is said to be *square-free* if it has no subword of the the form x^k with $x \in \mathbf{x}$ and $|k| > 1$. A word is said to be *cyclically square-free* if it has length greater than 1 and if all its cyclic permutations are square-free. Let w_{-1} , w_1 be disjoint sets of non-empty words on x. A word $t_1t_2 \cdots t_s$ ($s \ge 1$, $t_i \in w_{-1} \cup w_1$ for $i = 1, \ldots, s$) is called an *alternating* (w_{-1} , w_1)-word if the following holds: for $1 \le i < s$, if $t_i \in w_{\epsilon}$ $(\varepsilon = \pm 1)$ then $t_{i+1} \in w_{-\varepsilon}$. The word is called a *cyclically alternating* (w_{-1}, w_1) *word* if it is an alternating (w_{-1} , w_1)-word with the additional property that t_1 and t_s do not belong to the same set w_{-1} or w_1 . The t_i are called the *factors*. When considering a factor t_i of a cyclically alternating (w_{-1} , w_1)-word $t_1t_2 \cdots t_s$, we will sometimes be interested in the adjacent factors t_{i-1} , t_{i+1} . In this regard, it is to be understood that subscripts are computed mod s, so that if $i = 1$ then $t_{i-1} = t_s$, while if $i = s$ then $t_{i+1} = t_1$.

The *extended symmetric group* (on x) is the group of permutations of $x \cup x^{-1}$ generated by the permutations $(xy)(x^{-1}y^{-1})$, (xx^{-1}) $(x, y \in x)$. We denote this group by Ω_n where $n = |\mathbf{x}|$. The group Ω_n induces a group of automorphisms (also denoted Ω_n) of the free group on x.

Let Γ be a graph with vertex set V, and let X be a set with $|X| = |V|$. A *labelling of* Γ (by X) is a graph with vertex set X and edge set

 $\{\{\lambda(u), \lambda(v)\}\colon \{u, v\}$ is an edge of $\Gamma\}$,

where $\lambda : V \to X$ is some bijection. If Σ is a group of permutations of X, then two labellings of Γ , with underlying bijections λ , λ' say, are said to be *E-equivalent* if $\lambda = \sigma \lambda'$ for some $\sigma \in \Sigma$.

3.2. Two- Generator Presentations

We will show that *a symmetrized presentation* $\mathcal{P} = \langle a, b; r \rangle$ satisfies $T(4)$ *if and only if either: each element of r is cyclically square-free; or, there is an automorphism* $\sigma \in \Omega_2$ such that each element of σr is positive or negative.

For $\mathcal P$ satisfies $T(4)$ if and only if $\Gamma(\mathcal P^s)$ is a subgraph of a labelling by ${a, a^{-1}, b, b^{-1}}$ of one of:

Up to Ω_2 -equivalence, the labellings of $K_{2,2}$ are:

Now $\Gamma(\mathcal{P}^{s})$ will be a subgraph of the former labelling if and only if each relator of $\mathscr P$ is positive or negative; $\Gamma(\mathscr P^s)$ will be a subgraph of the latter labelling if and only if each relator of P is cyclically square-free.

Up to Ω_2 -equivalence, the only labelling of $K_{1,3}$ is:

Suppose $\Gamma(\mathcal{P}^{st})$ is a subgraph of this graph. If the vertex a^{-1} of $\Gamma(\mathcal{P}^{st})$ is isolated then so is a , in which case all vertices are isolated, and $\mathcal P$ has no relators. If the edge $\{a, a^{-1}\}$ belongs to $\Gamma(\mathcal{P}^{s})$ then a^{-1} is preceded by a^{-1} (and only by a^{-1}) in relators of $\mathcal P$. Thus neither of the edges $\{a, b\}$, $\{a, b^{-1}\}$ belongs to $\Gamma(\mathcal P^s)$, so r consists solely of powers of a.

3.3. Three-Generator Presentations

We will show that *a symmetrized presentation* $\mathcal{P} = \langle a, b, c; r \rangle$ satisfies $T(4)$ *if and only if there is an automorphism* $\sigma \in \Omega_3$ such that **r** is the symmetrized closure *of a set o's, where s satisfies one of the seven conditions 3.3.1-3.3. 7 listed below.*

3.3.I. Each element of s is positive.

3.3.2. Each element of s is either a power of c, or a cyclically square-free word in a and b, or a cyclically alternating word $t_1t_2 \cdots t_s$ in non-zero powers of c and non-empty square-free words in a and b with the property that for each factor t_i which is a positive power of c, t_{i-1} ends with $b^{\pm 1}$ and t_{i+1} starts with $a^{\pm 1}$, while for each factor t_i which is a negative power of c, t_{i-1} ends with $a^{\pm 1}$ and t_{i+1} starts with $b^{\pm 1}$.

EXAMPLE.
$$
s = \{c^6, a^{-1}baba^{-1}b^{-1}, (a^{-1}baba^{-1})c^{-5}(ba^{-1}ba)c^{-4}(b^{-1}a^{-1}b^{-1})c^3\}.
$$

3.3.3. Each element of s is a cyclically alternating $({a, a⁻¹, b, b⁻¹}, {c, c⁻¹})$ word.

EXAMPLE. $s = \{cac^{-1}b^{-1}c^{-1}acb\}.$

3.3.4. Each element of s is either a power of c, or a cyclically square-free word in a and b, or a cyclically alternating word $t_1t_2, \dots t_s$ in non-zero powers of c and non-empty square-free words in a and b with the property that for each factor t_i which is a positive power of c, t_{i-1} ends with a and t_{i+1} starts with a, while for each factor t_i which is a negative power of c, t_{i-1} ends with a^{-1} and t_{i+1} starts with a^{-1} .

EXAMPLE.
$$
s = {c^6, a^{-1}baba^{-1}b^{-1}, (abab^{-1}a^{-1})c^{-5}(a^{-1}b^{-1}aba^{-1})c^{-4}(a^{-1}ba)c^3}.
$$

3.3.5. Each element of s is either a cyclically alternating $({a}, {b}, {c}, {bc})$ -word, or a cyclically alternating (u, v) -word, where u is the set of alternating $({a}, {b}, c, bc)$ -words and v is the set of inverses of words in u. In addition, it is required in the latter case that no $\boldsymbol{\mu}$ -factor begins with c or ends with b, and no v-factor begins with b^{-1} or ends with c^{-1} .

EXAMPLE. $s = \{ababcac, (ababc)(bababca)^{-1}(abaca)(babc)^{-1}\}.$

3.3.6. Each element of s is either a power of a, or a power of c, or a cyclically alternating (u, v)-word, where $u = \{b, b^{-1}\}\$ and v is the set of words of the form $(a^mc^{-n})^{\pm 1}$ *(m, n positive integers).*

EXAMPLE.
$$
s = {a^{10}, c^6, (a^2c^{-3})b(ac^{-5})^{-1}b(a^7c^{-2})^{-1}b^{-1}}.
$$

300 P. HILL ET AL. Isr. J. Math.

3.3.7. Each element of s is either a power of *ac,* or a cyclically alternating (u, v) -word, where $u = \{b, b^{-1}\}\$ and v is the set of words of the form PQ^{-1} (P, Q non-empty positive square-free words in a and c).

EXAMPLE. $s = \{(ac)^4, \left[(ac)^2(a^{-1}c^{-1})^3a^{-1} \right] b \left[aca(c^{-1}a^{-1}) \right] b^{-1} \}.$

To prove the above, observe that $\mathcal P$ satisfies $T(4)$ if and only if $\Gamma(\mathcal P^s)$ is a subgraph of a labelling by $\{a, a^{-1}, b, b^{-1}, c, c^{-1}\}$ of one of the following:

Up to Ω_3 -equivalence, the labellings of $K_{3,3}$ are:

Now $\Gamma(\mathcal{P}^s)$ will be a subgraph of the former labelling if and only if each relator of $\mathscr P$ is positive or negative; $\Gamma(\mathscr P^s)$ will be a subgraph of the latter labelling if and only if r is the symmetrized closure of a set s satisfying 3.3.2.

We will say that $\mathcal P$ is of *Type A* if $\Gamma(\mathcal P^s)$ is Ω_3 -equivalent to a subgraph of one of the above labellings of $K_{3,3}$.

Up to Ω_3 -equivalence, the labellings of $K_{2,4}$ are:

Now $\Gamma(\mathcal{P}^{st})$ will be a subgraph of the former labelling if and only if r is the symmetrized closure of a set s satisfying 3.3.3. We will show that if $\Gamma(\mathcal{P}^{s})$ is a subgraph of the latter labelling then $\mathcal P$ is already of Type A. By 2.3.2 we can assume that $\mathcal P$ is finite, so that we can make use of 2.3.3. Looking at the weights of the vertices a, a^{-1}, b, b^{-1} we obtain:

$$
m_{a,a^{-1}} + m_{a,b^{-1}} = m_{a^{-1},a} + m_{a^{-1},c} + m_{a^{-1},c^{-1}} + m_{a^{-1},b},
$$

$$
m_{b,a^{-1}} + m_{b,b^{-1}} = m_{b^{-1},a} + m_{b^{-1},c} + m_{b^{-1},c^{-1}} + m_{b^{-1},b}.
$$

These give

$$
0 = m_{a^{-1},c} + m_{a^{-1},c^{-1}} + m_{b^{-1},c} + m_{b^{-1},c^{-1}},
$$

and so $m_{a^{-1},c} = m_{a^{-1},c^{-1}} = m_{b^{-1},c} = m_{b^{-1},c^{-1}} = 0$. Thus the edges $\{a^{-1}, c\}$, $\{a^{-1}, c^{-1}\}$, ${b^{-1}, c}$, ${b^{-1}, c^{-1}}$ do not belong to $\Gamma(\mathcal{P}^s)$.

An argument like that used for two-generator presentations above shows that if $\Gamma({\mathscr P}^s)$ is a subgraph of a labelling of $K_{1,5}$ then ${\mathscr P}$ is of Type A. (Alternatively, one can use a weight argument.)

Up to Ω_3 -equivalence, the labellings of Γ_0 are:

Now $\Gamma(\mathcal{P}^{st})$ will be a subgraph of (i) (resp. (ii), (vi), (vii)) if and only if r is the symmetrized closure of a set s satisfying 3.3.4 (resp. 3.3.5, 3.3.6, 3.3.7). We now show that if $\Gamma(\mathcal{P}^{\text{st}})$ is a subgraph of one of (iii), (iv), (v), then $\mathcal P$ is already of Type A. As before, we can assume that $\mathcal P$ is finite.

Consider (iii). Looking at the weights of a, a^{-1} and b, b^{-1} and using 2.3.3 we have:

$$
m_{a,b^{-1}} + m_{a,c} + m_{a,a^{-1}} = m_{a^{-1},a} + m_{a^{-1},b},
$$

$$
m_{b,a^{-1}} + m_{b,c^{-1}} + m_{b,b^{-1}} = m_{b^{-1},b} + m_{b^{-1},a}.
$$

From these we obtain

$$
m_{a,c}+m_{b,c^{-1}}=0.
$$

Thus $m_{a,c} = m_{b,c^{-1}} = 0$, so the edges $\{a, c\}$, $\{b, c^{-1}\}$ do not belong to $\Gamma(\mathcal{P}^{st})$.

Now consider (iv) and (v). Looking at the weights of a and a^{-1} , b and b^{-1} , c and c^{-1} , and proceeding similarly as above we obtain that $m_{a,b} = 0$ (for (iv)), $m_{b,c^{-1}} = 0$ (for (v)).

3.4. n-Generator Presentations

One can obviously, in theory, use arguments similar to those above to determine, for any n , all *n*-generator presentations satisfying $T(4)$. Firstly one must compute all graphs on 2n vertices without triangles, and which are maximal with this property. (We remark that, by Turán's Theorem $[1, p. 17]$, a graph on 2n vertices without triangles has at most n^2 edges.) Then one must analyse the labellings of these graphs by $\{x_1, \ldots, x_n, x_1^{-1}, \ldots, x_n^{-1}\}$, making use of weight arguments as above.

Unfortunately, even for $n = 4$, the amount of labour involved in carrying out these computations by hand is prohibitive. There are 10 graphs on 8 vertices without triangles, and which are maximal with this property, namely: the bipartite graphs $K_{4,4}$, $K_{3,5}$, $K_{2,6}$, $K_{1,7}$, and the graphs $\Gamma_1, \ldots, \Gamma_6$ depicted below. Some of these graphs are easily analysed, but others (such as Γ_2) have a large number of labellings (up to Ω_4 -equivalence).

ACKNOWLEDGEMENTS

The authors thank Ayre Juhász and Roger Lyndon for their comments.

REFERENCES

1. F. Harary, *Graph Theory,* Addison Wesley, Reading, Mass., 1969.

2. J. Huebschmann, *Cohomology theory of aspherical groups and of small cancellation groups, J.* Pure Appl. Algebra 14 (1979), 137-143.

3. D. Johnson, *Topics in the Theory of Group Presentations,* LMS Lecture Notes 42, CUP, 1980.

4. R. Lyndon and P. E. Schupp, *Combinatorial Group Theory,* Springer-Verlag, Berlin, Heidelberg, New York, 1977.

5. S. J. Pride, *Subgroups of small cancellation groups: a survey*, in *Groups - St Andrews 1981*, LMS Lecture Notes 71, CUP, 1982.

6. J.-P. Serre, *Trees,* Springer-Verlag, Berlin, Heidelberg, New York, 1980.